Tool Materials

- **Ferrous materials**
 - Tool steel, alloy steel, carbon steel, cast iron
- **Non-ferrous materials**
 - Aluminum, Zinc, Lead, Bismuth
- **Non-metallic materials**
 - Plastics, rubbers, epoxy resins

Physical and Mechanical Properties

- Weight
- Thermal and electrical conductivity
- Melting point
- Strength
 - Tensile
 - Compressive
 - Shear
 - Yield
Physical and Mechanical Properties

- Hardness
 - Rockwell
 - Brinell
- Wear resistance
- Toughness
- Plasticity
- Ductility
- Britteness
- Malleability

Ferrous Tool Materials

- Conditions
 - Hot rolled
 - Cold rolled
 - Ground

Ferrous materials

- Carbon steels
 - Low carbon 0.05% to 0.30% C
 - Soft,
 - Tough,
 - Easily machined, and
 - Welded
 - Case hardened
 - Used for tool bodies, handles, die shoes, where strength and wear resistance is not required.
Ferrous materials

• Carbon steels
 – Medium carbon 0.30 to 0.70% C
 • Great strength and toughness
 • Normal heat treatment can be given
 – Used for tool parts such as studs, pins, axles and nuts
 – High carbon 0.70 to 1.50% C
 • Wear resistance is required
 – Used for Drill bushings, locators, and wear pads

Alloy steels

• Carbon steels with additional alloying elements
• Expensive
Tool steels

- W – water hardening tool steels
 - Plain carbon (W1) and carbon vanadium (W2)
 - Low cost
- O – oil hardening tool steels
 - Manganese oil hardening steels
 - Better wear resistance
- A – Air hardening die steels
 - Better wear resistance

Heat treatment for ferrous materials

- Normalizing
- Spheroidizing
- Stress relieving
- Annealing
- Hardening
- Tempering
- Case hardening

Hardening consists of three operations

1. Heating
 - Preheating
 - Austenitization
 - Quenching
2. Quenching
 - Hardening the heated metal in a liquid
 - Cooling in air/gas
3. Tempering
 - Heating the quenched metal to a lower temperature
 - Cooling in air/gas
Fig. 62. TTT diagram for UH2 (AISI W1). Austenitising (hardening) temperature 720°C.

Fig. 71. Hardness and toughness of Stavax after tempering at different temperatures. Tempering at 250°C gives a good combination of hardness and toughness.
Fig. 66. TTT diagram for Art (95) & Zn. Austenitizing (hardening) temperature 80°C.

Fig. 66. TTT diagram for Alice (S) O1. Austenitizing (hardening) temperature 85°C.

Fig. 67. Tempering diagram for Alice (S) O1. The beginning of each curve shows the normal hardness after quenching from each respective hardening (austenitizing) temperature.
Tool steels

- **D** – high carbon high chromium die steels
 - Used for long run dies
 - Tough and good wear resistance
- **S** – shock resisting tool steels
 - Low carbon and high toughness
- **H** – hot work die steels
 - Low carbon and high alloy content

Tool steels

- **T and M** – tungsten and molybdenum based high speed steels
 - Good red hardness and abrasion resistance
- **L** – low alloy tool steels
 - Limited application
 - Coining and impression dies
- **F** – finishing steel
Cast iron

- High compressive strength and easy casting
- Large forming and drawing dies

Non-ferrous Tool Materials

- Aluminum
 - High strength to weight ratio
 - Corrosion resistant
 - Supports and locators to base plates and tool bodies
- Magnesium
- Bismuth alloys
 - Low melting temperature
Heat treatment for Non-ferrous materials

- Cold work
- Precipitation hardening

Hot working operations

- **Operations**
 - Warm forging, dies and punches
 - Roll forging, rolling segments
 - Upset forging, clamping tools
 - Progressive forging, dies
 - Axial closed die rolling, top and bottom dies
 - Cross forming, segments
 - Hot bending, tools
 - Hot calibration, tools
 - Zinc die casting, dies
 - Al-tube extrusion.

Hot working operations

- **Properties required**
 - Wear resistance
 - Toughness
 - High hot wear resistance
 - Very good high temperature properties
 - High resistance to thermal fatigue
 - Very good temper resistance
 - Very good thermal conductivity.
Cold working operations

- Operation
 - Cold Forging
 - Cold Rolling
 - Cold Extrusion
 - Sheet metal operations

Properties required
- high hardness
- high volume of carbides
- high hardness of the carbides
- large carbide size
- Wear resistance
- Toughness
<table>
<thead>
<tr>
<th>Grade</th>
<th>Uddelholm</th>
<th>Chemical composition %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>D1</td>
<td>ABWE</td>
<td>0.09</td>
</tr>
<tr>
<td>Spec. analysis</td>
<td>CALMAN</td>
<td>0.06</td>
</tr>
<tr>
<td>A2</td>
<td>ROGON</td>
<td>1.0</td>
</tr>
<tr>
<td>Spec. analysis</td>
<td>SLEPNER</td>
<td>0.9</td>
</tr>
<tr>
<td>D2</td>
<td>SVERKER 21</td>
<td>1.65</td>
</tr>
<tr>
<td>D6</td>
<td>SVERKER 3</td>
<td>2.05</td>
</tr>
<tr>
<td>Spec. analysis</td>
<td>YANADIS 1</td>
<td>1.5</td>
</tr>
<tr>
<td>Spec. analysis</td>
<td>YANADIS 5</td>
<td>2.1</td>
</tr>
<tr>
<td>Spec. analysis</td>
<td>YANADIS 10</td>
<td>2.9</td>
</tr>
<tr>
<td>M3.2PM</td>
<td>YANADIS 23</td>
<td>1.28</td>
</tr>
</tbody>
</table>